

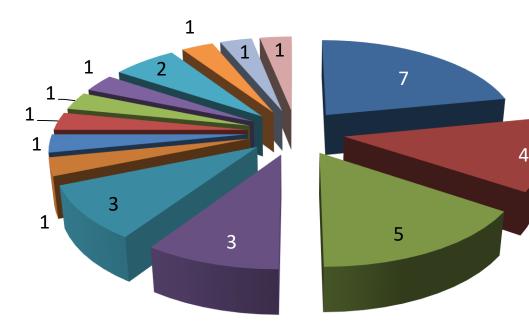
Role of the JCM in strengthening MRV for implementing and achieving NDC

Dr. Paweena Panichayapichet

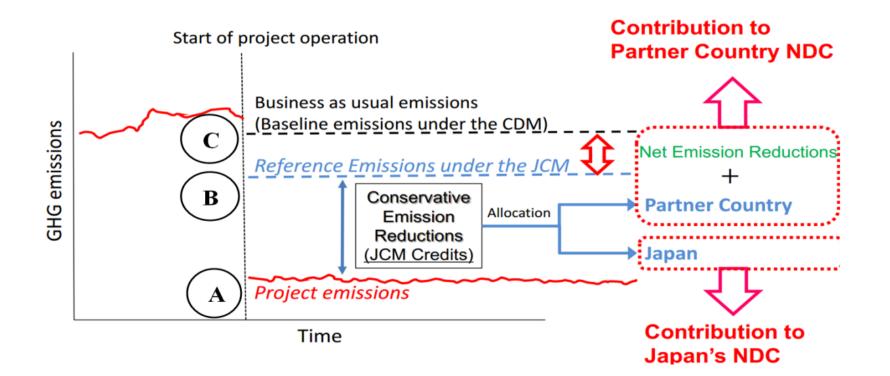
Role of the Joint Crediting Mechanism (JCM) Towards Sustainable Development and Achievement of NDC

Japan Pavilion, 6th December 2018, 17:00-18:30

Thailand Greenhouse Gas Management Organization is a public organization under the Ministry of Natural Resources and Environment (MoNRE) and is designated by the cabinet to be a secretariat of the JCM of the Thai side. TGO serves the Joint Committee by performing the work for the implementation of the JCM since November 2015. Besides, TGO also


- check the completeness and correctness of
 - draft methodologies
 - Project Design Documents (PDDs)
 - monitoring reports
- check the qualification of the Third Party Entity (TPE)
- participate the local stakeholder consultation meetings
- on-site visit JCM Model Projects
- promote the development of JCM projects in Thailand
- organize/co-organized seminars/workshops on JCM
- publish data about JCM on website

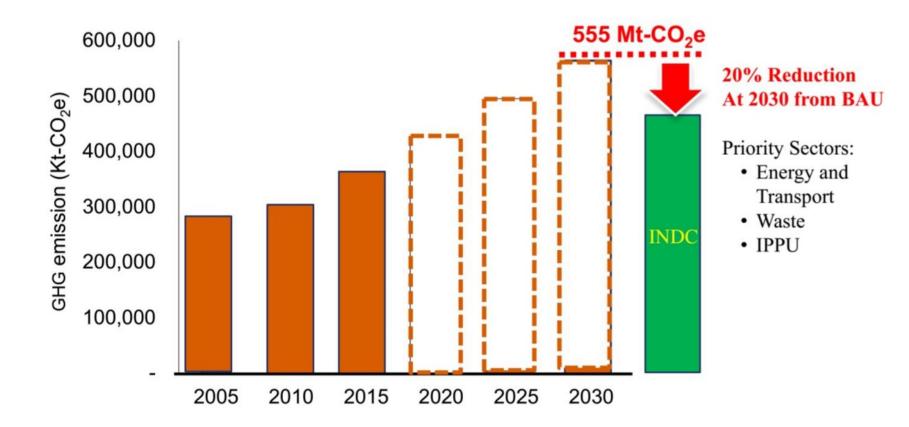
Type of JCM Model Projects


Project type	Number of projects	GHG reduction (tCO ₂ /y)
Energy efficiency	18	90,592
Renewable energy	8	39,080
	26	129,672

number of project categorized by technology

solar power
air conditioning
chiller
refrigerator
co-generation
waste heat recovery
heat pump
boiler
air-saving loom
ion exchange membrane
lighting
biomass
electric vehicle
hybrid RTG

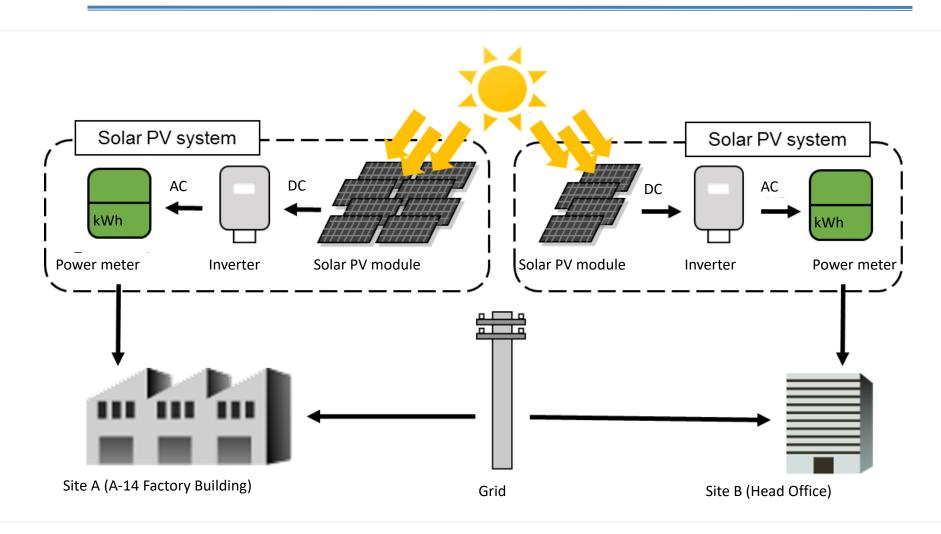
 RE_{p}


 PE_{p}

$$ER_p = RE_p - PE_p$$

- ER_p : Emission reductions during the period p [tCO₂/p]
 - : Reference emissions during the period p (tCO₂/p)
 - : Project emissions during the period p (tCO₂/p)

Thailand's NDC


⁽Source: ONEP, 2017)

Approved JCM Methodologies

Methodology code	Title	Approval	
TH_AM001	Installation of Solar PV System	23 Aug 2016	
TH_AM002	Energy Saving by Introduction of Multi-	Version 1.0 23 Aug 2016	
	Stage Oil-Free Air Compressor	Version 2.0 21 Aug 2017	
TH_AM003	Energy Saving by Introduction of High Efficiency Centrifugal Chiller	21 Aug 2017	
TH_AM004	Installation of Energy Saving air Jet Loom at Textile Factory	21 Aug 2017	
TH_AM005	Energy Saving by Introduction of Non- Inverter High Efficiency Centrifugal Chiller	21 Aug 2017	
TH_AM006	Installation of Displacement Ventilation Air Conditioning Unit in the Cleanroom of Semiconductor Manufacturing Factory	21 Aug 2017	
TH_AM007	Power Generation by Waste Heat Recovery in Cement Industry	20 Apr 2018	

JCM Methodologies: TH_AM001 Installation of Solar PV System

Calculation of project emissions

$$PE_p = 0$$

 PE_p : Project emissions during the period p (tCO₂/p)

Calculation of reference emissions

$$RE_p = \sum_i EG_{i,p} \times EF_{RE}$$

- RE_p : Reference emissions during the period p (tCO₂/p)
- $EG_{i,p}$: Quantity of the electricity generated by the project solar PV system *i* during the period p (MWh/p)
- EF_{RE} : Reference CO₂ emission factor of grid electricity and captive electricity (tCO₂/MWh)

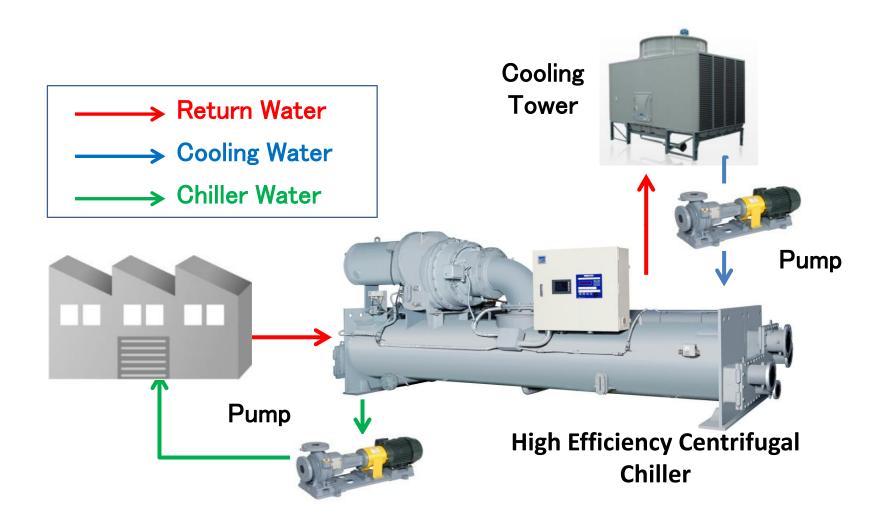
JCM Methodologies: TH_AM001 Installation of Solar PV System

- EF_{RE} : Reference CO₂ emission factor of grid electricity and captive electricity (tCO₂/MWh)
- calculated based on the power generation efficiency of 61.2% using natural gas as the power source.
- The default value for EF_{RE} is set to be 0.319 tCO₂/MWh.
- The default emission factor is derived from the result of the survey on the generation efficiency of major natural gas-fired power plants in Thailand. The default value should be revised if necessary from survey result which is conducted by the JC or project participants.

JCM Methodologies: TH_AM003

Energy Saving by Introduction of High Efficiency Centrifugal Chiller

High-efficiency centrifugal chiller for air conditioning



 ODP of the refrigerant (HFC-134a) used is zero for the ozone layer protection

JCM Methodologies: TH_AM005

Energy Saving by Introduction of Non-Inverter High Efficiency Centrifugal Chiller

JCM Methodologies:

TH_AM003: Energy Saving by Introduction of High Efficiency Centrifugal Chiller TH_AM005: Energy Saving by Introduction of Non-Inverter High Efficiency Centrifugal Chiller

Calculation of project emissions

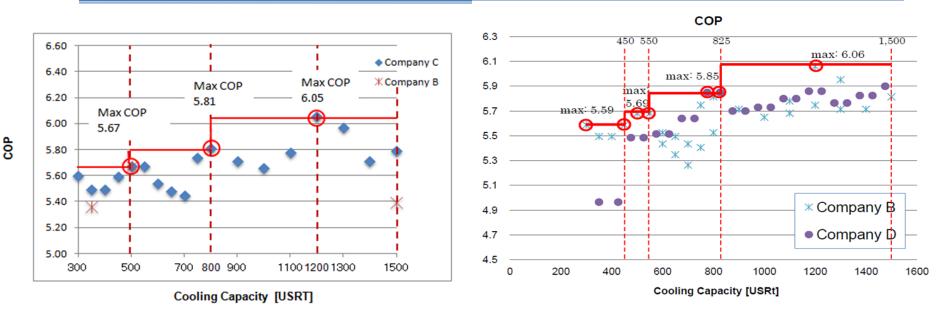
$$PE_p = \sum_{i} (EC_{PJ,i,p} \times EF_{elec})$$

 PE_p : Project emissions during the period p (tCO₂/p)

 $EC_{PJ,i,p}$: Power consumption of project chiller *i* during the period *p* (MWh/p)

 EF_{elec} : CO₂ emission factor for consumed electricity (tCO₂/MWh)

Calculation of reference emissions


$$RE_{p} = \sum_{i} \left[EC_{PJ,i,p} \times \left(COP_{PJ,tc,i} \div COP_{RE,i} \right) \times EF_{elec} \right]$$

RE_p	: Reference emissions during the period p (tCO ₂ /p)
EC _{PJ,i,p}	: Power consumption of project chiller <i>i</i> during the period <i>p</i> (MWh/p)
COP _{PJ,tc,i}	: COP of project chiller <i>i</i> calculated under the
	standardizing temperature conditions (-)
$COP_{RE,i}$: COP of reference chiller <i>i</i> under the
	standardizing temperature conditions (-)
$\textit{EF}_{\textit{elec}}$: CO_2 emission factor for consumed electricity (t CO_2 /MWh)

JCM Methodologies:

TH_AM003: Energy Saving by Introduction of High Efficiency Centrifugal Chiller TH_AM005: Energy Saving by Introduction of Non-Inverter High Efficiency Centrifugal Chiller

COP values of inverter type centrifugal chiller marketed in Thailand

Cooling capacity per	300≤x<500 500≤x<800 8	800≤x≤1500		Cooling capacity per unit (USRt)				
unit (USRt)	3003x<300	J00⊒x<000	0003x31500		300≤x≤450	450 <x≤550< td=""><td>550<x≤825< td=""><td>825<x< td=""></x<></td></x≤825<></td></x≤550<>	550 <x≤825< td=""><td>825<x< td=""></x<></td></x≤825<>	825 <x< td=""></x<>
Threshold COP value	5.67	5.81	6.05					≤1,500
				Threshold COP value	5.59	5.69	5.85	6.06

Role of JCM in achieving NDC target

	JCM	
Robust accounting	 avoid double counting avoid double claiming Corresponding adjustment 	~
Quality of units	 1 tCO₂eq directly leads to an emission reduction of at least 1 tCO₂eq in the transferring country additional not over estimated permanent 	

Thailand Greenhouse Gas Management Organization (Public Organization): TGO

The Government Complex, Ratthaprasasanabhakti Bldg., 9th Fl., 120 Chaengwattana Rd., Laksi, Bangkok 10210

Tel. +66 2141 9841 Fax. +66 2143 8404 email: paweena@tgo.or.th

