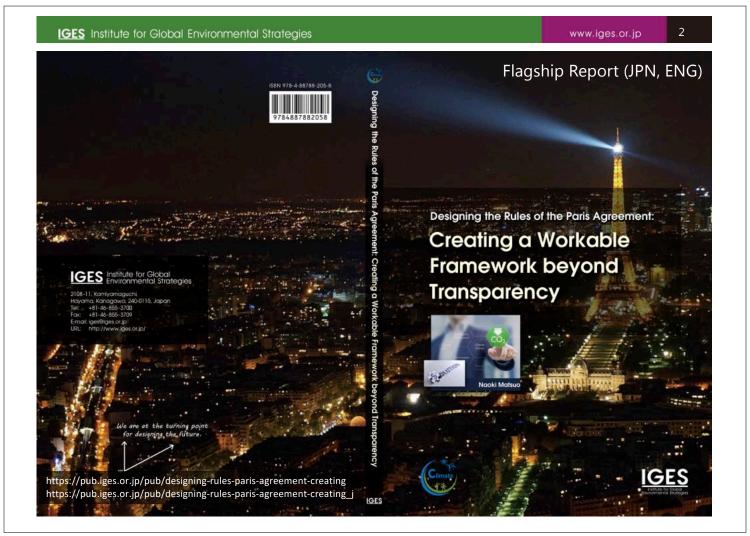
How to maximize the leverage out of the design of the NDC and implementation of the transparency framework

-Key elements for meaningful capacity building programs

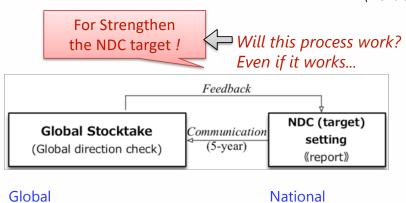
© EXIT

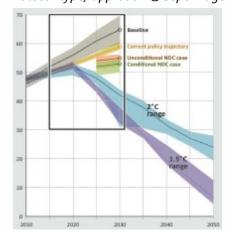


Naoki Matsuo

Principal Policy Researcher / IGES Senior Fellow

Big Challenges of the Paris Agreement


4


- All countries targeted
- Periodic check/adjust process installed
- MRV experiences accumulated
- INDC (192 countries); NC (24 years)
- Inter-ministerial arrangement

1.5–2°C above pre-industrial level

- Temp. Goal Setting but Extremely tough
- Voluntary target setting w/o penalty
- NDC = Ambition (?)

Failure of enhancing Kyoto type w/ legally binding target (Montreal Protocol-type) approach @Copenhagen



IGES Institute for Global Environmental Strategies

www.iges.or.jp

Essence of the operation of the PA framework

Experiences in the current international processes

UNFCCC

"Review" is for *completeness* and *transparency* of the national report.

Not for contents of PaMs.

Transparency arrangement

- National Communication + In-Depth Review (4-year cycle)
- Biennial (Update) Report + IAR/ICA (2-year cycle)

National GHG Inventory

NAMA CDM, JI

REDD-Plus

GHG MRV

(Measurement, Reporting, Verification) for Transparency and Accountability

IEA, APEC

Energy Policy Review

IGES Institute for Global Environmental Strategies

www.iges.or.jp

Instruments we have is "National Reporting System"

+ Review

NDC Guidance

How to express the NDC w/ target?

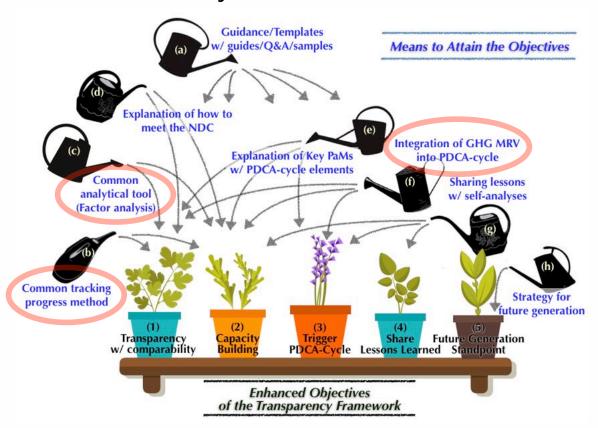
Transparency Framework Guidelines

How to track progress?

God is in the details...

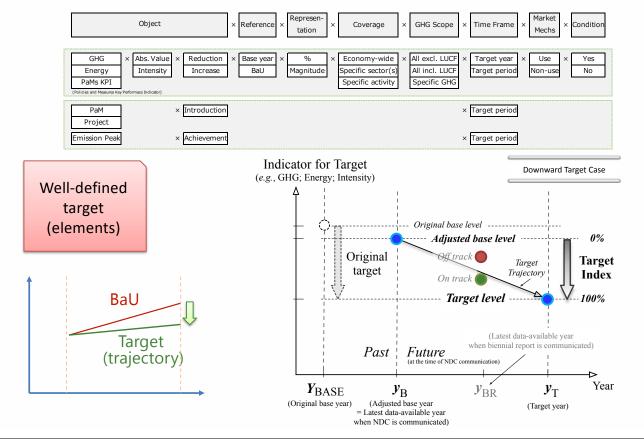
Developing a report is an **good exercise** for the country and for the person in charge, for...

- Understanding/recognizing/reconsidering the situation;
- Considering what to be done and how, in order to improve performance;


Not additional burden, but net benefit

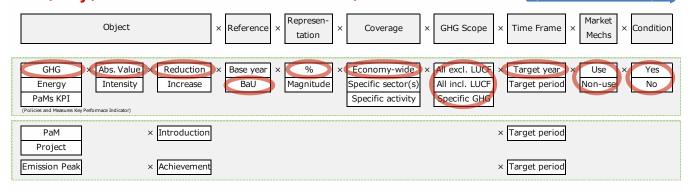
GHG mitigation measure has its primary objective

Specifying "reporting items" *concretely* which are useful for these purposes


5 Objectives and 8 Means

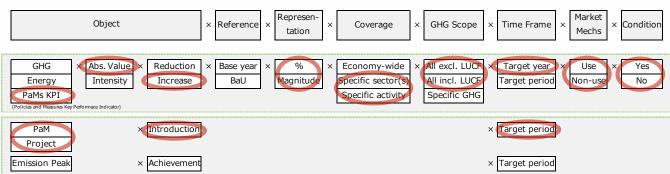
IGES Institute for Global Environmental Strategies

www.iges.or.jp


NDC and Its Progress Status Method

Reductions from BaU-Type NDC

Iran, Fiji, St. Vincent and the Grenadines, St. Kitts and Nevis


Iran	-4% (unconditional) and -12% (conditional); 7-GHGs
Fiji	-10% (unconditional) and -30% (+500 million USD); CO_2
St. Vincent and the Grenadines	-22% (conditional); fixed BaU; Target year 2025; 4-GHGs
St. Kitts and Nevis	-22% (2025) / -35% (2030) (conditional); CO ₂

IGES Institute for Global Environmental Strategies

9

Activity-Type NDC

Sudan, Samoa, Antigua and Barbuda

Sudan	Sector specific targets on KPIs & associated actions. Costs estimation.
Samoa	100% of Electricity by renewables by 2025 (conditional).
Antigua and Barbuda	Enhance existing policies (unconditional) and new measures (cond.).

Exercise for Tracking the Progress

2026 submission (latest data: 2024)

1	Increase renewable electricity capacity from 7.62% in 2014 to	
	20% by 2020 and to 30% by 2030 as a share of total electricity	
2	generation capacity.	
	Reduce electricity transmission losses from 13.7% in 2014 to	
	10.8% by 2020 and to 7.8% by 2030.	
3	Reduce building heat loss by 20% by 2020 and by 40% by 2030,	
	compared to 2014 levels.	
4	Reduce internal energy use of Combined Heat and Power plants	
	(improved plant efficiency) from 14.4% in 2014 to 11.2% by 2020	
	and 9.14% by 2030.	
5	Implement advanced technology in energy production such as	
	super critical pressure coal combustion technology by 2030.	
6	Improve national paved road network. Upgrading/Paving 8000	
	km by 2016, 11000 km by 2021.	
7	Improve Ulaanbaatar city road network to decrease all traffic by	
	30-40% by 2023.	
8	Increase the share of private hybrid road vehicles from	
	approximately 6.5% in 2014 to approximately 13% by 2030.	
	Shift from liquid fuel to LPG for vehicles in Ulaanbaatar and	
	•	

aimag (province) centres by improving taxation

Improve enforcement mechanism of standards for road vehicles

25%	
9.2%	
26%	Whether these actions are on track to meet the targets?
10.1%	
Not yet	
12,000 km	

Around 40%

14%

10% shifted

Uncertain

IGES Institute for Global Environmental Strategies

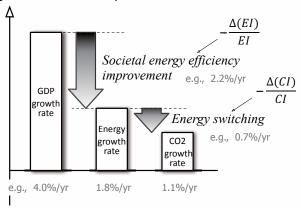
environmental fee system.

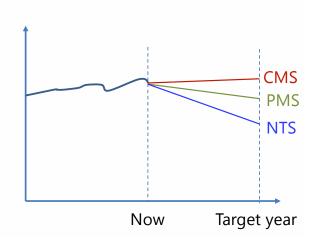
and non-road based transport.

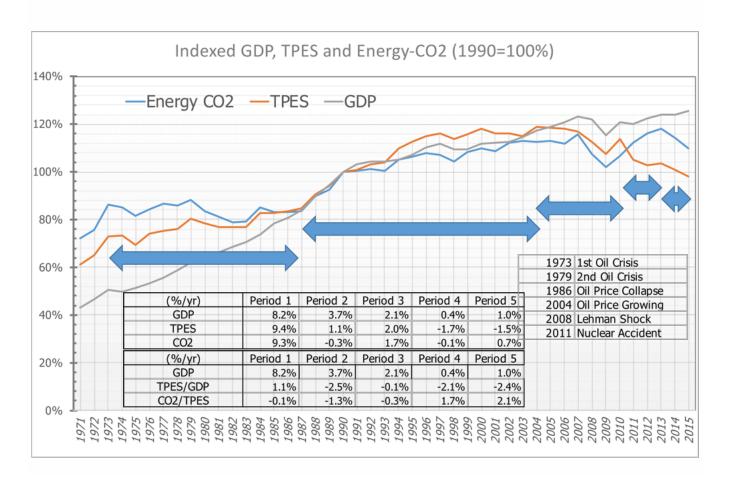
10

www.iges.or.jp

1.


Understanding the Emission Trend and NDC Target


$$\frac{\Delta(CO_2)}{CO_2} = \frac{\Delta(GDP)}{GDP} + \frac{\Delta(EI)}{EI} + \frac{\Delta(CI)}{CI}$$


 $(CO_2 \text{ growth rate}) = (GDP \text{ growth rate})$

- (societal energy efficiency improvement rate)
- (rate of decarbonization of the energy mix).

Annual growth rate for some period

IGES Institute for Global Environmental Strategies

www.iges.or.jp

1/

Introduction of PDCA-cycle (with GHG MRV)

Requirement to provide available information for GHG MRV incorporated in the PDCA cycle process of key actions.

(e.g.,) Hybrid Vehicle Promotion Program

- Overall objectives (main and co-benefits) of the PaM
- Choice from various PaM options (alternatives)
- Rough sketch and understanding the key characteristics of the chosen PaM
- **Key designing features**
 - Institutional arrangements and coordination among stakeholders/actors
 - Business model and costs/benefits analysis
 - Incentive setting
 - PDCA-cyclic process design with KPIs
 - Financing 4

IGES Institute for Global Environmental Strategies

15

IGES Institute for Global Environmental Strategies

www.iges.or.jp

Sharing Lessons Learned among Parties -Biennial Transparency Report as a good channel—

Party A

describes the followings in its BTR...

- **Experiences**
- Lessons learned

- **Analysis of success/failure**
- **Applicability conditions**

Very good exercise to go beyond (under PDCA-cycle)

Parties in similar situations

Interaction

Supported by

- **UNFCCC Secretariat**
- **International Organizations**
- **Donor Agencies**
- **Research Institutes**
- **NGOs**