COP21 Japan Side Event "Global Carbon Monitoring – Towards Modeling, Projection and Policy Decision" Japan Pavilion, Paris, France, 15:15-16:45, 4 December 2015

Space-borne Atmospheric GHG Monitoring Project in Japan

<u>Kei Shiomi</u>

Japan Aerospace Exploration Agency shiomi.kei@jaxa.jp

JAXA satellite programs

Size	Main body	3.7 m x 1.8 m x 2.0 m (Wing Span 13.7m)		
Mass	Total	1750kg		
Power	Total	3.8 KW (EOL)		
Life Time		5 years		
Orbit	sun synchronous orbit			
	Local time	e 13:00+/-0:15		
	Altitude	666km		
ye dan si take da k	Inclination	n 98deg		
	Repeat	3 days		
Launch	Vehicle	H-IIA		
	Schedule	Jan. 23 2009		

GOSAT satellite and sensors

TANSO=Thermal And Nearinfrared Sensor for carbonObservation

TANSO-FTS (Fourier Transform Spectrometer) Column-averaged dry-air mole fractions of GHGs (XCO₂, XCH₄)

TANSO-CAI (Cloud and Aerosol Imager) Cloud fraction, Aerosol optical thickness

How do we use GHG satellite data?

Column-averaged dry-air mole fractions of GHGs (XCO₂, XCH₄)

GHGs absorption spectra using sunlight

Methane remote-sensing observation referred in AR5

Challenge to optimize observation strategy

GOSAT detected mega-city CO₂ enhancement in Los Angels basin

GOSAT observation uncertainty of XCO2 is currently ~ 2 ppm. The detected enhancement in the LA basin was 3.2 ppm, that was higher than the observation uncertainty.

GOSAT suggested underestimation of US CH₄ emission inventory

Figure 1. (a) Annual average (June 2009 through May 2010) of retrieved chlorophyll-a fluorescence at 755 nm on a $2^{\circ} \times 2^{\circ}$ grid. Only grid-boxes with more than 15 soundings constituting the average are displayed. (b) Latitudinal monthly averages of chlorophyll fluorescence from June 2009 through end of August 2010.

Chlorophyll fluorescence has a potential to place constrain on Gross Primary Production (GPP).

Frankenberg et al., GRL, 2011 10

GOSAT-2: Successive greenhouse gas observation

Launch in early 2018 (JFY2017)

Upgrade in GOS	GOSAT achievement	GOSAT target		
Measurement precision	0.5 ppm for CO ₂ (monthly ave.) 5 ppb for CH ₄ (monthly ave.)	← 2ppm for CO_2 ← 12ppb for CH_4	←4 ppm for CO ←32 ppb for CH	
Flux estimation	1000km for land	←2000km in sub-continental scale		
Anthropogenic emission	CO to distinguish emission source			
Ecosystem carbon exchange	Chlorophyll fluorescence to place constrains on GPP			
Aerosol monitoring	Aerosol size distribution and its property			
and the second				

Anthropogenic emission source CO₂ related to CO

Adding CO band to GOSAT-2 GOSAT CO₂ and MOPITT CO

Figure 1. (a) ACOS v2.9 X_{CO_2} (in ppmv) and (b) MOPITT v5 X_{CO} (in ppbv) gridded at 2° resolution and averaged for Spring 2010. (c) A sample of megacity urban designation for Los Angeles (using population map as a proxy) is also plotted, along with (d) the X_{CO_2} and X_{CO} data points used in estimating $\Delta CO_2/\Delta CO$ for the urban region.

CO₂ and CO have a particular regional correlation affected by the anthropogenic activity.

Silva et al., *GRL*, 2013 12

Space-borne GHG monitoring with GOSAT partners

Envisat (ESA) 2003-2012	GOSAT (Japan) 2009-present	OCO-2 (NASA) 2014-present	TanSat (China) 2016-	GOSAT-2 (Japan) 2018-
CO ₂ , CH ₄	CO_2, CH_4	CO ₂	CO ₂	CO_2, CH_4
MERLIN	MicroCarb (CNES)	CarbonSat (ESA)	ASCENDS (NASA)	
(CNES/DLR)	2019-	later than 2020	later than 2020	
2019-	CO ₂	CO ₂ , CH ₄	CO ₂	
CH ₄			~450 km polar orbit	

Continuous GHG measurement from space will contribute to reveal global and regional carbon flux change.